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Abstract: 30 

Cold regions hydrology is very sensitive to the impacts of climate warming. Impacts of warming over 31 

recent decades in western Canada include glacier retreat, permafrost thaw and changing patterns of 32 

precipitation, with increased proportion of winter precipitation falling as rainfall and shorter durations of 33 

snowcover, and consequent changes in flow regimes. Future warming is expected to continue these 34 

trends. Physically realistic and sophisticated hydrological models driven by reliable climate forcing can 35 

provide the capability to assess hydrological responses to climate change. However, the provision of 36 

reliable forcing data remains problematic. Hydrological processes in cold regions involve complex phase 37 

changes and so are very sensitive to small biases in the driving meteorology, particularly in temperature 38 

and precipitation, including precipitation phase. Cold regions often have sparse surface observations, 39 

particularly at high elevations that generate a large amount of runoff. This paper aims to provide an 40 

improved set of forcing data for large scale hydrological models for climate change impact assessment. 41 

The best available gridded data in Canada is from the high resolution forecasts of the Global 42 

Environmental Multiscale (GEM) atmospheric model and outputs of the Canadian Precipitation Analysis 43 

(CaPA) but these datasets have a short historical record. The EU WATCH ERA-Interim reanalysis (WFDEI) 44 

has a longer historical record, but has often been found to be biased relative to observations over Canada. 45 

The aim of this study, therefore, is to blend the strengths of both datasets (GEM-CaPA and WFDEI) to 46 

produce a less-biased long record product (WFDEI-GEM-CaPA) for hydrological modelling and climate 47 

change impacts assessment over the Mackenzie River Basin. First, a multivariate generalization of the 48 

quantile mapping technique was implemented to bias-correct WFDEI against GEM-CaPA at 3h × 0.125o 49 

resolution during the 2005-2016 overlap period, followed by a hindcast of WFDEI-GEM-CaPA from 1979. 50 

The derived WFDEI-GEM-CaPA data are validated against station observations as a preliminary step to 51 

assess its added value. This product is then used to bias-correct climate projections from the Canadian 52 

Centre for Climate Modelling and Analysis Canadian Regional Climate Model (CanRCM4) between 1950 – 53 
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2100 under RCP8.5, and an analysis of the datasets shows the biases in the original WFDEI product have 54 

been removed and the climate change signals in CanRCM4 are preserved. The resulting bias-corrected 55 

datasets are a consistent set of historical and climate projection data suitable for large-scale modelling 56 

and future climate scenario analysis. The final product (WFDEI-GEM-CaPA, 1979-2016) is freely available 57 

at the Federated Research Data Repository at http://dx.doi.org/10.20383/101.0111 (Asong et al., 2018) 58 

while the original and corrected CanRCM4 data are available at https://doi.org/10.20383/101.0162 59 

(Asong et al., 2019). 60 

Subject Keywords: cold regions processes, observations, bias correction, Mackenzie River Basin 61 

1 Introduction 62 

Accurate and reliable weather and climate information at the basin scale is in increasingly high 63 

demand by policy-makers, scientists, and other stakeholders for various purposes such as water resources 64 

management (Barnett et al., 2005), infrastructure planning  (Brody et al., 2007), and ecosystem modelling 65 

(IPCC, 2013). Particularly, the potential impacts of a warming climate on water availability in snow-66 

dominated high latitude regions continue to be a serious concern given that over the past several decades, 67 

these regions have experienced some of the most rapid warming on earth (Demaria et al., 2016; 68 

Diffenbaugh et al., 2012; Islam et al., 2017; Martin and Etchevers, 2005; Stocker et al., 2013). The on-going 69 

science suggests that these warming trends are resulting in the intensification of the hydrologic cycle, 70 

leading to significant recent observed changes in the hydro-climatic regimes of major river basins in 71 

Canada and globally (Coopersmith et al., 2014; DeBeer et al., 2016; Dumanski et al., 2015). Changes in the 72 

timing and magnitude of river discharge (Dibike et al., 2016), shifts in extreme temperature and 73 

precipitation regimes (Asong et al., 2016b; Vincent et al., 2015) and changes in snow, ice, and permafrost 74 

regimes are anticipated (IPCC, 2013). Substantial evidence also indicates that the long-held notion of 75 

stationarity of hydrological processes is becoming invalid in a changing climate.  As pointed out by Milly 76 
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et al. (2008), this loss of stationarity means that there will be an increase in the likelihood and frequency 77 

of extreme weather and climate events, including floods and droughts.  78 

Water resources in most land areas north of 30° N are heavily dependent on natural water storage 79 

provided by snowpacks and glaciers, with water accumulated in the solid phase during the cold season 80 

and released in the liquid phase during warm events and the warm season. Particularly, the Canadian 81 

Rocky Mountains, the hydrological apex of North America with headwater streams flowing to the Arctic, 82 

Atlantic and Pacific oceans, constitutes an integral part of the global hydrological cycle (Fang et al., 2013). 83 

Flows in these high elevation headwaters depend heavily on meltwater from snowpacks and glaciers. 84 

However, given that it is characterized by a highly varying cold region hydroclimate, studies indicate that 85 

it is in these high elevation regions where climate variability and change is expected to be most 86 

pronounced in terms of its impacts on water supply (Beniston, 2003; Kane et al., 1991; Prowse and 87 

Beltaos, 2002; Woo and Pomeroy, 2011). More physically realistic and sophisticated hydrological models 88 

driven by reliable climate forcing information can enhance our ability to assess short- and long-term 89 

regional hydrologic responses to increasing variability and uncertainty in hydro-climatic conditions in a 90 

changing climate. Nonetheless, hydrological processes in cold regions involve complex phase changes and 91 

so are very sensitive to small biases in the driving meteorology, particularly in temperature and 92 

precipitation.   93 

Cold regions often have sparse surface observations, particularly at the high elevations that 94 

generate a major amount of runoff. The effects of mountain topography and high latitudes are currently 95 

not well reflected in the observational record. Ground-based measurements (e.g. gauges) are limited 96 

especially over the Canadian Rocky Mountains, and suffer from gross inaccuracies associated with cold 97 

climate processes (Asong et al., 2017; Wang and Lin, 2015; Wong et al., 2017). The advent and use of 98 

weather radar systems have addressed some of the short-comings of gauge coverage, at least where radar 99 

exists. Unfortunately, in Canada, for example, the spatial coverage of weather radar is limited to the 100 
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southern (south of 55° N) part of the country (Fortin et al., 2015b). Recently, improved satellite products 101 

have emerged such as the Global Precipitation Measurement (GPM) mission that provides meteorological 102 

information at fine spatiotemporal resolutions and regular intervals. But, the GPM is still at its early stage 103 

and only covers the region south of 60° N (Asong et al., 2017; Hou et al., 2014).  104 

The capability of the current generation of Earth System Models (ESMs) to represent 105 

meteorological variables is therefore of major interest for hydrological climate change impact studies in 106 

cold regions watersheds. Despite commendable progress being made, raw outputs from regional and 107 

global ESMs still differ largely from observational reference meteorology due partly to spatial scale 108 

mismatches and systematic biases (Taylor et al., 2012). Therefore, ESM outputs are often downscaled and 109 

biases are adjusted statistically before being used in hydrological simulations (Asong et al., 2016b; Chen 110 

et al., 2013; Chen et al., 2018; Gudmundsson et al., 2012). Recent research has demonstrated that bias 111 

correction, including adjustment of the dependence between driving variables, can lead to more realistic 112 

hydrological simulations in cold regions watersheds where the response of the system is sensitive to 113 

accumulation and melt of snow and ice (Meyer et al., 2019). 114 

Apart from uncertainty due to the many empirical statistical techniques which have been 115 

developed to post-process ESM outputs (Maraun, 2016), the quality and length of the reference 116 

observational data set for bias correction remains a major issue (Reiter et al., 2016; Schoetter et al., 2012; 117 

Sippel et al., 2016). In Canada and other regions of North America, regional gridded data sets such as the 118 

combined Global Environmental Multiscale (GEM) atmospheric model forecasts (Yeh et al., 2002) and the 119 

Canadian Precipitation Analysis―CaPA (Mahfouf et al., 2007)  have been found to perform comparably to 120 

ground observations, both statistically and hydrologically (Alavi et al., 2016; Boluwade et al., 2018; Eum 121 

et al., 2014; Fortin et al., 2015a; Gbambie et al., 2017; Wong et al., 2017). However, the duration of GEM-122 

CaPA is too short to be used to directly correct ESM climate due to unsynchronized internal 123 

variability―the recommended minimum record length for bias correction is 30 years  (Maraun, 2016; 124 
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Maraun et al., 2017). Other gridded products such as the EU WATCH ERA-Interim reanalysis―WFDEI 125 

(Weedon et al., 2014) and Princeton (Sheffield et al., 2006) have a longer historical record, but have been 126 

found to be biased relative to observations over Canada (Wong et al., 2017) and the United States (Behnke 127 

et al., 2016; Sapiano and Arkin, 2009). However, the WFDEI reanalysis has been found to outperform other 128 

long-record gridded products (Chadburn et al., 2015; Park et al., 2016; Wong et al., 2017).  129 

Because of sparse observational network, few gridded climate datasets exist that contain the 130 

necessary meteorological variables to drive physically-based land surface models at sub-daily temporal 131 

resolution north of 55° N in North America. Because the combination of the GEM and CaPA datasets has 132 

been shown to perform relatively well in these regions, the intent here is to use these datasets to bias-133 

correct the WFDEI dataset, which contains a sufficient length of record for bias-correcting climate 134 

projection datasets. Aside from its short record length, a limitation of the GEM-CaPA dataset for wider 135 

use for hydrological models is that the wind, temperature, and humidity variables are available only at 136 

the 0.995 sigma(σ) level (approximately 40 m, varying in time and space; herein referred to as the “40 m” 137 

level) across the full length of record. The WFDEI dataset contains these variables at the surface level, 138 

which is more typically used by hydrological models. Therefore, the bias correction effectively modifies 139 

the source surface level data to reproduce the climate found at the 40 m level of the reference dataset 140 

(GEM-CaPA). Many regional and large-scale land surface hydrological models are perfectly capable of 141 

using climate data at this atmospheric level. Thus, no effort is made to interpolate the product back to 142 

surface level. In addition, the bias-corrected dataset at an effective 40 m level can then be used to bias-143 

correct these same fields from the CanRCM4 dataset, which are at the same 0.995 σ level as in the 144 

reference dataset (GEM-CaPA). The analysis results in a bias-corrected set of historical and projected 145 

climate data that is consistent in time and considers the regional topography and climate effects of GEM 146 

and CaPA, and is suitable to drive large-scale simulations of distributed hydrological models for assessing 147 

climate change impacts in data sparse regions.  148 
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The aim of this study, therefore, is to combine the strengths of both datasets (GEM-CaPA and 149 

WFDEI) to produce a less-biased long record product (WFDEI-GEM-CaPA) using a multi-stage bias 150 

correction framework. First, a multivariate generalization of the quantile mapping technique was 151 

implemented to bias-correct WFDEI against GEM-CaPA at 3h × 0.125o resolution during the 2005-2016 152 

period, followed by a hindcast of WFDEI-GEM-CaPA from 1979. Subsequently, a 15-member initial 153 

condition ensemble of the CanESM2 ESM (historical and RCP8.5 scenarios), which have been dynamically 154 

downscaled at 0.44° (50 km) resolution using the fourth generation Canadian Regional Climate Model 155 

(CanRCM4), are sourced from the Canadian Centre for Climate Modelling and Analysis. A multivariate bias 156 

correction algorithm is applied to the CanRCM4 outputs (1950 – 2100) to adjust the data against WFDEI-157 

GEM-CaPA. The bias-corrected products are important for developing distributed hydrological models as 158 

well as for assessing climate change impacts over the Mackenzie River basin (MRB), which constitutes a 159 

testbed for the Changing Cold regions Network (CCRN) project’s large-scale hydrological modelling 160 

strategy and is the case study for the current analysis.  161 

2 Methodology 162 

2.1 Study area 163 

The study area is the Mackenzie River Basin (MRB) which is the largest river basin in Canada and 164 

the largest river draining from North America to the Arctic Ocean (Fig. 1). It drains an area of about 1.8 165 

million km2 and discharges more than 300 km3 of freshwater to the Beaufort Sea in the Arctic each year. 166 

The basin drains parts of British Columbia, Alberta, Saskatchewan, the Northwest Territories and the 167 

Yukon Territory in northwestern Canada.  The western tributaries are relatively steep as they originate 168 

from the Canadian Rocky Mountains while the eastern tributaries have milder topography with several 169 

interconnected lakes and swamps. With a wide variety of climatic conditions such as the cold temperate, 170 

mountain, subarctic and arctic zones, about 75% of the basin is underlain by continuous and discontinuous 171 

permafrost.  172 
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 173 

Figure 1: Location of the Mackenzie River Basin in North America. 174 

2.2 Data sources 175 

2.2.1 Gridded GEM-CaPA product  176 

 Hourly archived forecast data from the GEM model were acquired from Environment and Climate 177 

Change Canada (http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/submenus/rdps_e.html, 178 

last access: 28 September 2018). The fields include downward incoming solar radiation, downward 179 

incoming longwave radiation and pressure at the surface, as well as specific humidity, air temperature, 180 

and wind speed at approximately 40 m above ground surface. The 40 m level was used because surface 181 

level variables at 1.0 σ (approximately at 2 m for temperature and humidity, and 10 m for wind speed) 182 

are only available in the archive from 2010 onward. The GEM data are approximately 24 km resolution 183 

from October 2001, approximately 15 km from June 2004, and approximately 10 km resolution from 184 

November 2012, and are provided on a rotated latitude/longitude grid in Environment and Climate 185 
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Change Canada―ECCC ‘standard file’ format. The archived data are of former operational forecasts, and 186 

contain model outputs from versions of GEM prior to 2.0.0 through 5.0.0. 187 

6-Hourly total precipitation data from the complementary CaPA product 188 

(http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/submenus/capa_e.html, last access: 28 189 

September 2018) were also acquired. The analysis incorporates observed precipitation from 190 

meteorological weather stations, and more recently from radar, into the precipitation field from GEM. 191 

The CaPA data are approximately 10-km resolution from January 2002, also on a rotated 192 

latitude/longitude grid in ECCC ‘standard file’ format. The data contain reanalysis outputs from CaPA 193 

2.4b8 from 2002-2012, and of former operational analyses from versions of CaPA 2.3.0 through 4.0.0 from 194 

November 2012 onward. 195 

The variables from GEM and CaPA were spatially interpolated and re-projected to a regular 196 

latitude/longitude grid at 0.125o resolution. For data from GEM, the interpolation was done using a 197 

bilinear algorithm, while data from CaPA were interpolated using nearest neighbour (Schulzweida et al., 198 

2004). Where necessary, the GEM fields were converted to SI units and CaPA was converted to a 199 

precipitation rate in SI units for better compatibility with some hydrological models.  200 

2.2.2 Gridded WFDEI product  201 

The gridded WFDEI meteorological forcing data has a global 0.5o spatial resolution and 3-h time 202 

step covering the period 1979-2016 (http://www.eu-watch.org/data_availability, last access: 25 July 203 

2018). Weedon et al. (2014) used the ERA-Interim surface meteorology data as baseline information to 204 

derive the WFDEI product. Firstly, ERA-Interim data were interpolated at half-degree spatial resolution to 205 

match the land–sea mask defined by the Climatic Research Unit (CRU) of the University of East Anglia, 206 

Norwich, England. Subsequently, corrections for elevation and monthly bias of climate trends in the ERA-207 

Interim fields were applied to the interpolated data. The WFDEI data have two sets of precipitation data: 208 

the Global Precipitation Climatology Centre product (GPCC) and CRU Time Series version 3.1 (CRU TS3.1). 209 
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Thus, two variants of the WFDEI product are available―WFDEI-GPCC and WFDEI-CRU. The WFDEI-CRU 210 

data set was used here because it goes up to 2016, whilst the WFDEI-GPCC had only been updated until 211 

2013 at the time of our analysis. 212 

2.2.3 Station observations  213 

 To evaluate the added value of bias-correcting WFDEI against GEM-CaPA, in situ hourly 214 

precipitation totals at 9 stations located across the MRB were utilized (Fig. 2). This station network is 215 

maintained by Environment and Climate Change Canada (ECCC) 216 

(http://climate.weather.gc.ca/historical_data/search_historic_ data_e.html, last access: 15 March 2019). 217 

Only precipitation (which is available at the surface for all data sets) is validated in this study because of 218 

the differences in heights between other gridded variables such as air temperature, specific humidity, and 219 

wind speed (see Sections 2.3 and 3.1) and the ECCC station data. The data were extracted for the period 220 

from 01 January 2005 to 31 December 2016. Out of 81 stations located over the MRB (Fig. 2), 9 of these 221 

stations were found to have less than 10% of missing data (calculated at daily timescale) between this 222 

period and were retained for further consideration (see Table 1 for additional information on the 9 223 

stations retained for further analysis). This dataset is hereafter referred to as ECCC-S (S for station).  224 
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 225 

Figure 2: Spatial distribution of the initial 81 ground-based precipitation gauges (red and yellow dots) over 226 

the study area during the period 2005 – 2016. Data screening for missing values (10% threshold used here) 227 

resulted in 9 of these stations (yellow dots) being retained for further analysis.  228 

 229 

Table 1: List of observation stations used for validating the various gridded historical products between 230 

2005 – 2016. The ‘percent missing’ column indicates the percentage of missing values for each station 231 

over the period 2005 – 2016  232 

Station name Station_id Province Latitude Longitude Elevation Percent missing 

FORT VERMILION 30495 AB 58.38 -116.04 289 7.14 

BARRHEAD CS 30641 AB 54.09 -114.45 648 1.89 

BEAVERLODGE RCS 30669 AB 55.2 -119.4 745 6.14 

LAC LA BICHE CLIMATE 30726 AB 54.77 -112.02 567 1.19 

INUVIK CLIMATE 41883 NT 68.32 -133.52 103 4.91 

FORT SMITH CLIMATE 41884 NT 60.03 -111.93 203 3.19 

HAY RIVER CLIMATE 41885 NT 60.84 -115.78 164 0.66 

FORT SIMPSON CLIMATE 41944 NT 61.76 -121.24 168 0.46 

NORMAN WELLS CLIMATE 43004 NT 65.29 -126.75 93.6 3.45 

11

https://doi.org/10.5194/essd-2019-103

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 31 July 2019
c© Author(s) 2019. CC BY 4.0 License.



2.2.4 Climate model outputs  233 

The historical and future climate simulations utilized in this study are part of the CanRCM4 large 234 

ensemble which consists of 50 members and downscaled at horizontal spatial resolutions of 0.44° (50 235 

km). These CanESM2 simulations had been produced initially by the Canadian Sea Ice and Snow Evolution 236 

Network (CanSISE) Climate Change and Atmospheric Research (CCAR) Network project 237 

(https://www.cansise.ca/, last access: 24 April 2019). The input data for the historical period, i.e., 1950 – 238 

2005 as well as the future (2006 – 2100) RCP simulations of CanRCM4 were provided by the parent ESM 239 

(CanESM2) as specified in the Coupled Model Intercomparison Project Phase 5 (CMIP5) guidelines. The 240 

data are sourced from the Canadian Centre for Climate Modelling and Analysis (CCCma) at 241 

www.cccma.ec.gc.ca/data/canrcm/CanRCM4 (last access: 6 March 2019). This study utilized 15 members 242 

of the 0.44 degrees resolution product at 1-h time step and values were aggregated to 3-h resolution prior 243 

to bias correction. The seven forcing variables needed for driving the CCRN MESH model 244 

(https://wiki.usask.ca/display/MESH/About+MESH, last access: 10 May 2019) and which were bias- 245 

corrected in the current study are included in Table 2.   246 

2.3 Data processing and bias correction workflow 247 

The workflow for the multi-stage bias correction is shown in Fig.3. Bias correction was done after 248 

aggregating 1-h GEM-CaPA estimates to 3-h (the values at each time step represent the mean of the 249 

previous 3-h period, to make it consistent with WFDEI) and interpolating both WFDEI and GEM-CaPA to 250 

0.125ᵒ resolution. For bias correction, a multi-stage approach was implemented as follows. A multivariate 251 

generalization of the quantile mapping technique (Cannon, 2018) which combines quantile delta mapping 252 

(Cannon et al., 2015) and random orthogonal rotations to match the multivariate distributions of two data 253 

sets was implemented to bias-correct WFDEI against GEM-CaPA at 3-h*0.125ᵒ resolution during the 2005-254 

2016 period. Models were fitted to data for each calendar month while accounting for inter-variable 255 

dependence structure. Using the fitted models (2005-2016), a hindcast was made of WFDEI between 256 
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1979-2004. Finally, the corrected WFDEI data derived from the fitted (2005-2016) and hindcast (1979-257 

2004) periods were concatenated to obtain the bias-corrected WFDEI-GEM-CaPA product (1979-2016). 258 

 259 

Figure 3. A schematic representation of inputs and bias correction procedure used to produce the WFDEI-260 

GEM-CaPA meteorological forcing data set.  261 

For bias-correcting the 15-member CanRCM4 initial condition ensemble against the WFDEI-GEM-262 

CaPA product, CanRCM4 was also spatially interpolated to match the WFDEI-GEM-CaPA specifications 263 

using nearest neighbour interpolation. The multivariate bias correction (MBCn) technique (described 264 

above) transfers all aspects of the WFDEI-GEM-CaPA continuous multivariate distribution to the 265 

corresponding multivariate distribution of variables from CanRCM4 during the 1979 – 2008 calibration 266 

period (also known here as historical period). Subsequently, when applied to future projections, changes 267 
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in quantiles of each variable between the historical and future period are also preserved. Models were 268 

fitted to data for each calendar month and for each grid point while preserving the dependence 269 

structure among variables. The historical data sets used in the fitting procedure include WFDEI-GEM-CaPA 270 

(1979 – 2008) and CanRCM4 (1979 – 2008). Using the fitted models, quantiles of CanRCM4 output from 271 

1950 – 2100 were changed. To evaluate the need to bias-correct CanRCM4, performance of the bias 272 

correction scheme, as well the impact of bias correction on the climate change signal, the seasonal cycle 273 

of all 7 variables is assessed over three 30-year periods: 1979–2008 (referred hereafter as 1990s); 2021–274 

2050 (referred to hereafter as 2030s) and 2071–2100 (referred to hereafter as 2080s). 275 

3 Results and discussion 276 

3.1 Bias correction of WFDEI  277 

Table 2 presents an overview of the seven variables processed in this study. Note that the GEM 278 

40 m variables are used directly to correct WFDEI surface level variables (2 m temperature, 2 m specific 279 

humidity, and 10 m wind speed). Therefore, the corrected WFDEI-GEM-CaPA data reflect 40 m elevations 280 

above the surface. The spatial coverage of the WFDEI-GEM-CaPA data is the same as the areal extent of 281 

the MRB (Figs. 1 and 2). The suitability of the bias correction algorithm to reproduce the observed seasonal 282 

cycle and inter-annual variability of the variables was assessed for the fitting (2005-2016) and hindcast 283 

(1979-2004) periods. Data extracted over the entire Mackenzie River basin is used to demonstrate the 284 

quality of the bias correction exercise and uniqueness of the resulting output. Fig. 4 shows the seasonal 285 

cycle for GEM-CaPA, WFDEI and WFDEI-GEM-CaPA during the fitting period. Overall, the monthly 286 

distributions show that the bias was removed for all variables resulting in the very close distributions 287 

between GEM-CaPA and WFDEI-GEM-CaPA. The bias was particularly large for wind speed, an important 288 

variable for both alpine and prairie blowing snow redistribution calculations (Pomeroy and Li, 2000), but 289 

was successfully removed. Fig. 5 shows the mean annual time series of the seven variables over the 1979-290 

2016 period. It is noticeable that the bias is corrected while the inter-annual variability is well preserved 291 
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between WFDEI and WFDEI-GEM-CAPA, except for shortwave radiation where the inter-annual variability 292 

is not fully preserved as shown by the correlation between the WFDEI and WFDEI-GEM-CaPA annual 293 

series. However, this should not be a major issue when impact models are driven using these data. 294 

Table 2: List variables processed in this study with heights and units in each dataset. 295 

 WFDEI GEM-CaPA WFDEI-GEM-CaPA 

Variable Height Unit Height Unit Height Unit 
Precipitation  Surface kg m-2 s-1 surface kg m-2 s-1 surface kg m-2 s-1 
Air Temperature 2 m K 40 m K 40 m K 
Specific Humidity 2 m kg kg-1 40 m kg kg-1 40 m kg kg-1 
Wind Speed 10 m m s-1 40 m m s-1 40 m m s-1 
Surface Pressure Surface Pa Surface Pa Surface Pa 
Surface Downwelling 
Shortwave Radiation 

Surface W m-2 Surface W m-2 Surface W m-2 

Surface Downwelling 
Longwave Radiation 

Surface W m-2 Surface W m-2 Surface W m-2 

 296 

 297 
Figure 4: Seasonal cycle of GEM-CaPA (dark slate blue), WFDEI (orange) and bias corrected data―WFDEI-298 

GEM-CaPA (green) for air temperature (a), precipitation (b), surface pressure (c), wind speed (d), 299 
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shortwave radiation (e), longwave radiation (f), and specific humidity (g) during the fitting period (2005-300 

2016). 301 

 302 
Figure 5: Time series of GEM-CaPA (dark slate blue), WFDEI (orange) and bias corrected data―WFDEI-303 

GEM-CaPA (green) for air temperature (a), precipitation (b), surface pressure (c), wind speed (d), 304 

shortwave radiation (e), longwave radiation (f), and specific humidity (g) during the periods 2005-2016 305 

(GEM-CaPA) and 1979-2016 (WFDEI and WFDEI-GEM-CaPA). The correlation (r) between the WFDEI and 306 

WFDEI-GEM-CaPA annual series is indicated for each variable. 307 

The foregoing analyses have shown that the bias in the WFDEI data was removed for both the 308 

fitting and hindcast periods. However, some potential limitations remain―for example, WFDEI was 309 

interpolated directly from 0.5o to 0.125o and bias-corrected against GEM-CaPA at 0.125o. The interpolation 310 

does not add any event-scale spatial variability for a variable like precipitation which is very variable across 311 

different scales. These issues have been reviewed extensively by Cannon (2018), Maraun (2013), Maraun 312 

et al. (2010), and Storch (1999). 313 
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3.2 Validation of gridded products against station observations  314 

 In this section, the WFDEI-GEM-CaPA product is validated against station observations (ECCC-S) 315 

as a way to indicate the benefit of bias-correcting WFDEI against GEM-CaPA. As mentioned in Section 316 

2.2.3, the validation focusses on precipitation given that the other variables are issued at different heights 317 

(e.g. 2m vs 40m) for various data sets. Thus, the height differences preclude direct validation of other 318 

variables against the ECCC-S data which are measured at the surface. Validation is performed for the 2005 319 

– 2016 period using monthly precipitation totals. Figure 6 shows the percentage of missing values by year 320 

for each of the 9 stations. Fort Simpson Climate has the most ‘completeness’ of records while Beaverlodge 321 

RCS and Fort Vermilion have the least, particularly between 2013 – 2015 where about 30% of the records 322 

are missing for some years (e.g. 2013 and 2014). It is worth mentioning that all of the 81 stations located 323 

over the MRB had no data before the year 2000 (see Table S1 in the supplementary material). The station 324 

metadata in Table S1 was last downloaded from the ECCC website on April 11, 2019. To compare stations 325 

against gridded products, the corresponding precipitation series of gridded products for each gauge was 326 

obtained by combining the surrounding four grid cells via bilinear interpolation.  327 

 328 
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Figure 6: Percentage of missing values for the 9 selected stations. The percentages are computed on 329 

daily precipitation totals.  330 

 In terms of precipitation totals, Fig. 7 depicts quantile–quantile (Q–Q) plots of monthly 331 

precipitation from WFDEI-GEM-CaPA, WFDEI and CaPA compared against ECCC-S. As expected, although 332 

with noticeable differences across the MRB, CaPA agrees well with ECCC-S since some or all of these 333 

meteorological stations are assimilated by the CaPA system. WFDEI tends to overestimate the observed 334 

precipitation amounts in Barrhead CS and Beaverlodge RCS while it underestimates precipitation amounts 335 

greater than ~50 mm in locations such as Fort Simpson, Hay River, Norman Wells, and Inuvik. Overall, 1) 336 

CaPA performs better than WFDEI, and 2) correcting WFDEI against CaPA adds value to the WFDEI data 337 

set, thus the reason for the close agreement between WFDEI-GEM-CaPA and ECCC-S. All three products 338 

tend to underestimate high precipitation amounts in Norman Wells although CaPA and WFDEI-GEM-CaPA 339 

compare relatively more closely to ECCC-S than does WFDEI. Note that extracting data from grid points 340 

does not only have the effect of smoothing the area averages, but comparing grid point estimates to 341 

station values may not provide a clear picture of the quality of a gridded product. However, this diagnostic 342 

analysis can provide preliminary insights into the potential performance of a data set.  343 
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 344 

Figure 7: Quantile-quantile plots of modelled (CaPA, WFDEI and WFDEI-GEM-CaPA) and observed monthly 345 

precipitation totals.  346 

3.2 Bias correction and future climate projections  347 

In this section, the need to bias-correct the CanRCM4 outputs is shown and whether the simulated 348 

climate change signal was preserved after applying MBCn to the CanRCM4 outputs is determined. Figure 349 

8 shows the climatological seasonal cycle of all 7 variables which are required to drive the MESH model 350 

for the MRB. First, between April and October, CanRCM4 overestimates the observed (i.e. WFDEI-GEM-351 

CaPA) daily precipitation amounts and specific humidity during the historical period.  This is also true in 352 

the case of daily mean wind speed in the cold months (October to April). However, it underestimates the 353 

wind speed in the warm season (May to September). Surface pressure is underestimated during 354 

September to May and overestimated in the summer (June to August). For the other variables (e.g. air 355 
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temperature and radiation), CanRCM4 is able to simulated closely the observed seasonal cycle although 356 

biases still exist. These biases necessitated the application of the MBCn algorithm on the raw CanRCM4 357 

outputs.  The MBCn algorithm removed the bias in the CanRCM4 simulations during the fitting period 358 

(1990s) as can be judged from the close fit between WFDEI-GEM-CaPA and the unbiased CanRCM4 output 359 

(corr_1990s). On the projected climate change signal, there is a projected change in the amplitude of all 360 

variables but not a shift in the phase of the cycle over the MRB with global warming. Precipitation, specific 361 

humidity and longwave radiation are projected to increase in the future, with larger changes expected in 362 

the warm season (April – October) while air temperature is projected to increase, particularly in the cold 363 

months (October – March). These climate change signals are very much well preserved after applying 364 

MBCn to the CanRCM4 simulations.  365 

 366 
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Figure 8: Seasonal cycle of WFDEI-GEM-CaPA, raw and bias-corrected CanRCM4 data for air temperature 367 

(a), precipitation (b), specific humidity (c), surface pressure (d), wind speed (e), shortwave radiation (f), 368 

and longwave radiation (g) during the periods 1979–2008; 2021–2050 and 2071–2100.  369 

4 Conclusions  370 

Cold regions hydrology is very sensitive to the impacts of climate warming. More physically 371 

realistic hydrological models driven by reliable climate forcing can provide the capability to assess 372 

hydrological responses to climate variability and change. However, cold regions such as the Mackenzie 373 

River Basin often have sparse surface observations, particularly at high elevations where a large amount 374 

of runoff is generated. By making this long-term dataset available, it is hoped that it can be used to better 375 

understand and represent the seasonal/inter-annual variability of hydrological fluxes and the timing of 376 

runoff, and their long-term trends. This data set is also valuable for bias correction of climate model 377 

projections to assess potential impacts of future climate change on the hydrology and water resources of 378 

the basin.  379 

The raw CanRCM4 outputs were found to have systematic biases which required bias correction 380 

towards WFDEI-GEM-CaPA. There are clear discrepancies between the seasonal cycle of WFDEI-GEM-381 

CaPA, raw, and bias-corrected CanRCM4 data. For example, the CanRCM4 simulated climatological daily 382 

mean precipitation in June over the MRB between 1979 – 2008 is ~2.5 mm/day while the observed value 383 

is ~1.5 mm/day. This results in a 1.0 mm/day wet bias which can have various implications for quantifying 384 

water resources availability, management and adaptation in a future changed climate. Therefore, it is 385 

crucial to produce the bias-corrected CanRCM4 outputs prior to using the data to drive large scale 386 

hydrological models for climate change impacts analysis in the MRB. Nevertheless, the WFDEI-GEM-CaPA 387 

data used here as the reference have uncertainties (although it is superior to WFDEI as shown in Fig. 7) 388 

and should be used with caution especially from the perspective of over-interpreting impact model 389 

outputs. 390 
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5 Data availability 391 

The final product (WFDEI-GEM-CaPA, 1979-2016) is freely available at the Federated Research 392 

Data Repository at http://dx.doi.org/10.20383/101.0111 (Asong et al., 2018) while the original and 393 

corrected CanRCM4 data are also freely available at https://doi.org/10.20383/101.0162 (Asong et al., 394 

2019).   395 
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